Divisi Perpustakaan dan Literasi UNISBANK

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

Penelitian Dosen

PREDIKSI LAMA STUDI MAHASISWA MENGGUNAKAN TEKNIK DATAMINING (STUDI KASUS PADA FAKULTAS TEKNOLOGI INFORMASI UNISBANK)

Arief Jananto, S.Kom, M.Cs - Nama Orang; Eko Nur Wahyudi, S.Kom, M.Cs - Nama Orang;

Tidak Tersedia Deskripsi


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
-
No. Panggil
PD/011/2013
Penerbit
: ., 2013
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
004
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
-
Info Detail Spesifik
Lama studi dari mahasiswa ini sangatlah penting bagi mahasiswa, program studi serta perguruan tinggi. Permasalahan lama studi setiap mahasiswa bisa disebabkan atau dipengaruhi oleh banyak faktor. Hal tersebut telah dibuktikan dengan beberapa penelitian pada permasalahan tersebut yang mendapati sejumlah faktor yang berpengatuh terhadap lama studi mahasiswa. Dengan menggunakan teknik data mining khususnya klasifikasi untuk prediksi dengan algoritma naive bayes dapat dilakukan prediksi terhadap ketepatan waktu studi dari mahasiswa berdasarkan data training yang ada. Data training dan testing yang digunakan diambil secara random pada tabel data master yang digunakan. Algoritma naive bayes, menghitung perbandingan peluang antara jumlah dari masing-masng kriteria nilai fields terhadap nilai hasil prediksi sesunggunya. Fungsi untuk prediksi dibuat menggunakan Query pada MySql dalam bentuk function(fbayesian). Dari hasil uji coba diperoleh tingkat kesalahan prediksi berkisar 20% sampai dengan 50% dengan data training dan testing yang diambil secara random. Namun rata-rata tingkat kesalahan berkisar 20 % hingga 34%. Tinggi rendahnya tingkat kesalahan dapat disebabkan oleh jumlah record data dan tingkat konsistensi dari data training yang dgunakan. Sedangkan hasil prediksi dari ketepatan lama studi dari mahasiswa angkatan 2008 adalah sebesar 254 mahasiswa diprediksi ”Tepat Waktu” dan sisanya yaitu 4 orang diprediksi ”Tidak Tepat Waktu”. Kata Kunci : Prediksi, Lama Studi, Data Mining, Naive bayes, MySql
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
Tidak Ada Data
Komentar

Anda harus masuk sebelum memberikan komentar

Divisi Perpustakaan dan Literasi UNISBANK
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2026 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?